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Abstract
Starting from a spectral problem, we derive the well-known Heisenberg
hierarchy. An explicit and universal Darboux transformation for the whole
hierarchy is constructed. The soliton solutions for the Heisenberg hierarchy
are obtained by applying the Darboux transformation.

PACS numbers: 05.45.Yv, 02.30.Jr

1. Introduction

From the middle of the 1970s, the continuous Heisenberg spin chain aroused considerable
interest [1–5]. Tjon and Wright obtained the explicit formula for the single-soliton solution
in the isotropic case [3]. Takhtajan studied the integration of the continuous Heisenberg
spin chain equation through the inverse scattering transform method and obtained its Lax
representation [4]. Afterwards, Chen and Li gave the higher order Heisenberg spin chain
equations, and they proved that these evolution equations are equivalent to the evolution
equation of AKNS type [5]. By the use of the spectral problem nonlinearization method, Qiao
obtained the finite-dimensional integrable system and the involutive solutions of the higher
order Heisenberg spin chain equations [6].

Darboux transformation is a powerful method to get exact solutions of nonlinear partial
differential equations. The key for constructing Darboux transformation is to expose a kind
of covariant properties that the corresponding spectral problems possess. There have been
many tricks to do this for getting explicit solutions to various soliton equations [7–10]. In this
paper, we are interested in the Darboux transformation and exact solutions of the Heisenberg
hierarchy associated with the following Heisenberg spectral problem:

ψx = Uψ = λU1ψ =
(−λω λu

λv λω

)
ψ, ω2 + uv = 1. (1.1)

The outline of our present paper is as follows. In section 2, we derive the Heisenberg hierarchy
associated with the spectral problem (1.1). In section 3, we construct Darboux transformation
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for the Heisenberg hierarchy. In section 4, we construct soliton solutions for the hierarchy by
using its Darboux transformation.

2. The Heisenberg hierarchy

In order to derive the isospectral hierarchy associated with (1.1), we consider the auxiliary
problem

ψt = V (n)ψ, V (n) =
n∑

k=0

Vkλ
n−k+1 =

n∑
k=0

(
V

(k)
11 V

(k)
12

V
(k)

21 V
(k)

22

)
λn−k+1. (2.1)

The compatibility condition between (1.1) and (2.1) yields the zero-curvature equation

Utn − V (n)
x + [U,V (n)] = 0, (2.2)

which is equivalent to the following recurrence relations:

U1V0 − V0U1 = 0,

Vk−1,x = U1Vk − VkU1, 1 � k � n

U1t = Vnx.

(2.3)

Further we choose V
(0)

11 = −ω, V
(0)

12 = u, V
(0)

21 = v, V
(0)

22 = ω, and from (2.3) we have

−2ωV
(k)

12 − u
(
V

(k)
11 − V

(k)
22

) = V
(k−1)

12x , (2.4)

v
(
V

(k)
11 − V

(k)
22

)
+ 2ωV

(k)
21 = V

(k−1)
21x , (2.5)

∂x

(
uV

(k)
21 + vV

(k)
12 − ωV

(k)
11 + ωV

(k)
22

) = uxV
(k−1)

21x

2ω
− vxV

(k−1)
12x

2ω
, (2.6)

∂x

(
V

(k)
11 + V

(k)
22

) = 0. (2.7)

From (2.4) and (2.5), we could easily prove that

V
(k)

12

∣∣
(u,v)=(0,0)

= −1

2ω
∂xV

(k−1)
12

∣∣
(u,v)=(0,0)

= · · · =
(−1

2ω

)k

∂k
xV

(0)
12

∣∣
(u,v)=(0,0)

= 0

V
(k)

21

∣∣
(u,v)=(0,0)

= 1

2ω
∂xV

(k−1)
21

∣∣
(u,v)=(0,0)

= · · · =
(

1

2ω

)k

∂k
xV

(0)
21

∣∣
(u,v)=(0,0)

= 0.

We use the condition V
(k)

11

∣∣
(u,v)=(0,0)

= V
(k)

22

∣∣
(u,v)=(0,0)

= 0 (1 � k � n) to select the integration
constant to be zero, then (2.6) and (2.7) are equivalent to

uV
(k)

21 + vV
(k)

12 − ωV
(k)

11 + ωV
(k)

22 =
∫

uxV
(k−1)

21x

2ω
− vxV

(k−1)
12x

2ω
dx, (2.8)

V
(k)

11 + V
(k)

22 = 0. (2.9)
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By using (2.4), (2.5), (2.8) and (2.9), we can get V
(k)
ij from V

(k−1)
ij . A direct calculation gives

V
(1)

11 = 1
2 (ωxω + uvx), V

(1)
12 = 1

2 (uωx − uxω),

V
(1)

21 = 1
2 (vxω − vωx), V

(1)
22 = 1

2 (ωxω + uxv),

V
(2)

11 = − 1
4

(
ωxx + 3

2ω
(
uxvx + ω2

x

))
, V

(2)
12 = 1

4

(
uxx + 3

2u
(
uxvx + ω2

x

))
,

V
(2)

21 = 1
4

(
vxx + 3

2v
(
uxvx + ω2

x

))
, V

(2)
22 = 1

4

(
ωxx + 3

2ω
(
uxvx + ω2

x

))
.

· · · · · ·
So the soliton hierarchy associated with Heisenberg spectral problem (1.1) can be written as
follows:

utn = V
(n)

12x vtn = V
(n)

21x, n = 0, 1, 2, . . . . (2.10)

The first and second typical nonlinear systems (n = 1, 2) in the hierarchy are, respectively,

ut1 = 1
2 (uωx − uxω)x, vt1 = 1

2 (vxω − vωx)x, (2.11)

and

ut2 = 1
4

(
uxx + 3

2u
(
uxvx + ω2

x

))
x
, vt2 = 1

4

(
vxx + 3

2v
(
uxvx + ω2

x

))
x
. (2.12)

3. Darboux transformation

In this section, we will construct a Darboux transformation for the soliton hierarchy (2.10).
The Darboux transformation is actually a special gauge transformation

ψ̃ = T ψ (3.1)

of the solutions of the Lax pairs (1.1) and (2.1). It is required that ψ̃ also satisfies Lax pairs
(1.1) and (2.1) with some Ũ and Ṽ (n), i.e.

ψ̃x = Ũ ψ̃, Ũ = (Tx + T U)T −1, (3.2)

ψ̃t = Ṽ (n)ψ̃, Ṽ (n) = (Tt + T V (n))T −1. (3.3)

By cross differentiating (3.2) and (3.3), we get

Ũt − Ṽ (n) + [Ũ , Ṽ (n)] = T
(
Ut − V (n)

x + [U,V (n)]
)
T −1, (3.4)

which implies that in order to make systems (2.10) invariant under the gauge transformation
(3.1), we should require Ũ , Ṽ (n) have the same forms as U,V (n), respectively. At the same
time the old potentials u and v in U,V (n) will be mapped into new potentials ũ and ṽ in
Ũ , Ṽ (n). This process can be done continually and usually it may yield a series of multisoliton
solutions. Following the idea of [7], we can construct Darboux transformation for soliton
hierarchy (2.10) as follows.

Let hi be the solution of spectral problems (1.1) and (2.1) when λ = λi (i = 1, 2; λi �= 0).
We construct a new matrix

H = (h1, h2).

From (1.1) and (2.1), we can get

Hx = U1H�, Ht =
n∑

k=0

VkH�n−k+1, � = diag(λ1, λ2). (3.5)
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Then we construct

T = Q1λ + Q0, (3.6)

where

Q0 = −I, Q1 = H�−1H−1 =
(

A B

C D

)
. (3.7)

It is easy to see that

Q1x = Hx�
−1H−1 − H�−1H−1HxH

−1 = U1 − Q1U1Q
−1
1 , (3.8)

and

det Q1 = AD − BC = 1

λ1λ2
�= 0. (3.9)

Substituting (3.6) into (3.2) and (3.3), by using (3.5), we can obtain

Ũ = Ũ1λ, Ṽ (n) =
n∑

k=0

Ṽkλ
n−k+1, (3.10)

where

Ũ1 = Q1U1Q
−1
1 , Ṽ0 = Q1V0Q

−1
1 ,

Ṽk = Q1VkQ
−1
1 − Vk−1Q

−1
1 + Ṽk−1Q

−1
1 , 1 � k � n.

(3.11)

Next we will prove that Ũ and Ṽ (n) also have the same forms as U and V (n) after some
transformations.

Proposition 1. The matrix Ũ determined by (3.10) has the same form as U, that is

Ũ = Ũ1λ =
(−λω̃ λ̃u

λ̃v λω̃

)
, ω̃2 + ũ̃v = 1, (3.12)

where the transformations between u, v, ω and ũ, ṽ, ω̃ are given by

ũ = 2ωAB + uA2 − vB2

AD − BC
,

ṽ = −2ωCD − uC2 + vD2

AD − BC
,

ω̃ = ω(AD + BC) + uAC − vBD

AD − BC
.

(3.13)

A,B,C,D are determined by (3.7). The transformation (ψ, u, v, ω) → (ψ̃, ũ, ṽ, ω̃) is called
a Darboux transformation of the spectral problem (1.1).

Proof. From (3.10) we can obtain

Ũ1 = Q1U1Q
−1
1

=
(

A B

C D

)(−ω u

v ω

) (
A B

C D

)−1

= 1

AD − BC

(−ω(AD + BC) − uAC + vBD 2ωAB + uA2 − vB2

−2ωCD − uC2 + vD2 ω(AD + BC) + uAC − vBD

)
=

(−ω̃ ũ

ṽ ω̃

)
.
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We can also find

ω̃2 + ũ ṽ = −det Ũ1 = −det Q1 · det U1 · det Q−1
1 = 1.

So we get that after the transformation (3.13), Ũ has the same form as U. The proof is
completed. �

Next we shall prove that Ṽ (n) also has the same form as V (n) under the transformations
(3.1) and (3.13).

Proposition 2. The matrix Ṽ (n) determined by (3.10) has the same form as V (n) under the
transformations (3.1) and (3.13).

Proof. Because V (n) = ∑n
k=0 Vkλ

n−k+1 and Ṽ (n) = ∑n
k=0 Ṽkλ

n−k+1, we only need to prove
that Ṽk has the same form as Vk after the transformations (3.1) and (3.13) (0 � k � n).

First, it is easy to see that

V0 = U1, Ṽ0 = Q1V0Q
−1
1 = Ũ1.

From proposition 1, we can get Ṽ0 which has the same form as V0.
Again by using (2.2) and (3.4), we can get

Ũt − Ṽ (n)
x + [Ũ , Ṽ (n)] = T

(
Ut − V (n)

x + [U,V (n)]
)
T −1 = 0. (3.14)

We have proved that Ũ has the same form as U, so Ṽk satisfies the same equations as Vk .
Following a similar proof as in section 2, we could easily prove that Ṽ

(k)
12

∣∣
(̃u,̃v)=(0,0)

=
Ṽ

(k)
21

∣∣
(̃u,̃v)=(0,0)

= 0. Next we only need to prove Ṽ
(k)

11

∣∣
(̃u,̃v)=(0,0)

= Ṽ
(k)

22

∣∣
(̃u,̃v)=(0,0)

= 0
(1 � k � n).

In the following proof, we set ω̃0 = ω̃|(̃u,̃v)=(0,0) = 1 (the proof also holds for
ω̃0 = −1).

When ũ = 0, ṽ = 0, we can get from (3.13) that

u = − 2BD

AD − BC
, v = 2AC

AD − BC
, ω = AD + BC

AD − BC
. (3.15)

From (3.11), we have

Ṽ1|(̃u,̃v)=(0,0) =
(

Ṽ
(1)

11 Ṽ
(1)

12

Ṽ
(1)

21 Ṽ
(1)

22

)
(̃u,̃v)=(0,0)

= Q1V1Q
−1
1 − V0Q

−1
1 + Ṽ0Q

−1
1

∣∣
(̃u,̃v)=(0,0)

= Q1V1Q
−1
1 − Q−1

1 Ṽ0 + Ṽ0Q
−1
1

∣∣
(̃u,̃v)=(0,0)

,

so we get

Ṽ
(1)

11

∣∣
(̃u,̃v)=(0,0)

= 1

AD − BC

[
(AD + BC)V

(1)
11 + BDV

(1)
21 − ACV

(1)
12

]
, (3.16)

Ṽ
(1)

22

∣∣
(̃u,̃v)=(0,0)

= − 1

AD − BC

[
(AD + BC)V

(1)
11 + BDV

(1)
21 − ACV

(1)
12

]
. (3.17)

Substituting (3.15) into (3.16), (3.17) and choosing k = 1 in (2.8) and (2.9), we can get

Ṽ
(1)

11

∣∣
(̃u,̃v)=(0,0)

= Ṽ
(1)

22

∣∣
(̃u,̃v)=(0,0)

= 0. (3.18)

If we suppose Ṽ
(k−1)
ij

∣∣
(̃u,̃v)=(0,0)

= 0 (1 � k � n) holds, again by using (3.11), we can get

Ṽk|(̃u,̃v)=(0,0) =
(

Ṽ
(k)

11 Ṽ
(k)

12

Ṽ
(k)

21 Ṽ
(k)

22

)
(̃u,̃v)=(0,0)

= Q1VkQ
−1
1 − Vk−1Q

−1
1 + Ṽk−1Q

−1
1

∣∣
(̃u,̃v)=(0,0)

.
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From this equation and (3.15), we can obtain

Ṽ
(k)

11

∣∣
(̃u,̃v)=(0,0)

= ωV
(k)

11 − u

2
V

(k)
21 − v

2
V

(k)
12 − DV

(k−1)
11 − CV

(k−1)
12

AD − BC
, (3.19)

Ṽ
(k)

22

∣∣
(̃u,̃v)=(0,0)

= −ωV
(k)

11 +
u

2
V

(k)
21 +

v

2
V

(k)
12 − −BV

(k−1)
21 − AV

(k−1)
11

AD − BC
, (3.20)

Ṽ
(k)

12

∣∣
(̃u,̃v)=(0,0)

= −2ABV
(k)

11 − B2V
(k)

21 + A2V
(k)

12

AD − BC
− −BV

(k−1)
11 + AV

(k−1)
12

AD − BC
= 0, (3.21)

Ṽ
(k)

21

∣∣
(̃u,̃v)=(0,0)

= 2CDV
(k)

11 + D2V
(k)

21 − C2V
(k)

12

AD − BC
− DV

(k−1)
21 + CV

(k−1)
11

AD − BC
= 0. (3.22)

By using (2.4), (2.5), (3.8), (3.15), (3.21) and (3.22), we can prove that when ũ = 0, ṽ = 0

∂x

(
DV

(k−1)
11 − CV

(k−1)
12

AD − BC

)
= −1

2

[
uxV

(k−1)
21x

2ω
− vxV

(k−1)
12x

2ω

]
, (3.23)

∂x

(
−BV

(k−1)
21 − AV

(k−1)
11

AD − BC

)
= 1

2

[
uxV

(k−1)
21x

2ω
− vxV

(k−1)
12x

2ω

]
. (3.24)

Note the fact that V
(s)
ij

∣∣
(u,v)=(0,0)

= 0 (1 � s � n), so the integral constant must be zero, that
is

DV
(k−1)

11 − CV
(k−1)

12

AD − BC
= −

∫
uxV

(k−1)
21x

4ω
− vxV

(k−1)
12x

4ω
dx, (3.25)

−BV
(k−1)

21 − AV
(k−1)

11

AD − BC
=

∫
uxV

(k−1)
21x

4ω
− vxV

(k−1)
12x

4ω
dx. (3.26)

Substituting (3.25), (3.26) into (3.19), (3.20) and using (2.8), we can finally get

Ṽ
(k)

11

∣∣
(̃u,̃v)=(0,0)

= ωV
(k)

11 − u

2
V

(k)
21 − v

2
V

(k)
12 +

∫
uxV

(k−1)
21x

4ω
− vxV

(k−1)
12x

4ω
dx = 0, (3.27)

Ṽ
(k)

22

∣∣
(̃u,̃v)=(0,0)

= −ωV
(k)

11 +
u

2
V

(k)
21 +

v

2
V

(k)
12 −

∫
uxV

(k−1)
21x

4ω
− vxV

(k−1)
12x

4ω
dx = 0. (3.28)

Thus, we proved that Ṽ
(k)
ij

∣∣
(̃u,̃v)=(0,0)

= 0 (1 � k � n).

We proved that Ṽ (n) and V (n) satisfy the same zero-curvature equation and the same
boundary conditions. So they must have the same forms. The proof is completed. �

From propositions 1 and 2, we can get the following theorem:

Theorem 1. The solutions (u, v, ω) of soliton hierarchy (2.10) are mapped into their new
solutions (̃u, ṽ, ω̃) under Darboux transformations (3.1) and (3.13), where A,B,C,D are
given by (3.7).
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4. Applications of Darboux transformations

In this section, we will apply the Darboux transformation (3.13) to construct explicit solutions
of the Heisenberg hierarchy (2.10). As usual we make the Darboux transformation starting
from a special solution of (2.10). We start from u = u0, v = v0, ω = ω0, and we choose

h
(k)
1 =

(
h

(k)
11

h
(k)
12

)
, h

(k)
2 =

(
h

(k)
21

h
(k)
22

)
, 1 � k � N, (4.1)

as the solutions of Lax pairs (1.1) and (2.1) when λ = λ
(k)
1 and λ = λ

(k)
2 . Then we could

construct the multisoliton solutions of (2.10) as follows.
First, we construct

H(1) = (
h

(1)
1 , h

(1)
2

)
, �(1) =

(
λ

(1)
1 0

0 λ
(1)
2

)
,

Q
(1)
1 = H(1)(�(1))−1(H (1))−1.

(4.2)

Then by the use of theorem 1, we can get the new solutions u1, v1, ω1 of (2.10) from the
following equation:(−ω1 u1

v1 ω1

)
= Q

(1)
1

(−ω0 u0

v0 ω0

) (
Q

(1)
1

)−1
. (4.3)

By the use of (3.1), (3.6) and after some calculations, we can get the solutions of Lax pairs
(1.1) and (2.1), where u = u1, v = v1, ω = ω1 and λ = λ

(2)
1 , λ

(2)
2 . These solutions can be

expressed as follows:

h
(2)

1 = �
(2)
1



∣∣∣∣∣∣∣
h

(2)
11

λ
(2)
1

[
h

(2)
1 , h

(1)
2

]
h

(1)
11

λ
(1)
1

[
h

(1)
1 , h

(1)
2

]
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

h
(2)
12

λ
(2)
1

[
h

(2)
1 , h

(1)
2

]
h

(1)
12

λ
(1)
1

[
h

(1)
1 , h

(1)
2

]
∣∣∣∣∣∣∣


, h

(2)

2 = �
(2)
2



∣∣∣∣∣∣∣
h

(2)
21

λ
(2)
2

[
h

(2)
2 , h

(1)
1

]
h

(1)
21

λ
(1)
2

[
h

(1)
2 , h

(1)
1

]
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

h
(2)
22

λ
(2)
2

[
h

(2)
2 , h

(1)
1

]
h

(1)
22

λ
(1)
2

[
h

(1)
2 , h

(1)
1

]
∣∣∣∣∣∣∣


,

where

�
(2)
1 = λ

(2)
1

(
λ

(2)
1 − λ

(1)
2

)
λ

(1)
2

[
h

(1)
1 , h

(1)
2

] , �
(2)
2 = λ

(2)
2

(
λ

(2)
2 − λ

(1)
1

)
λ

(1)
1

[
h

(1)
2 , h

(1)
1

] ,

[
h

(s)
i , h

(t)
j

] = h
(s)
i1 h

(t)
j2 − h

(s)
i2 h

(t)
j1

λ
(s)
i − λ

(t)
j

, i, j = 1, 2.

We construct

H(2) = (
h

(2)

1 , h
(2)

2

)
, �(2) =

(
λ

(2)
1 0

0 λ
(2)
2

)
,

Q
(2)
1 = H(2)(�(2))−1(H (2))−1.

(4.4)

Then we can get the new solutions u2, v2, ω2 of (2.10) from the following equation:(−ω2 u2

v2 ω2

)
= Q

(2)
1

(−ω1 u1

v1 ω1

) (
Q

(2)
1

)−1

= Q
(2)
1 Q

(1)
1

(−ω0 u0

v0 ω0

) (
Q

(1)
1

)−1(
Q

(2)
1

)−1
. (4.5)
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If we have done the Darboux transformation N − 1 times, and got the solutions
uN−1, vN−1, ωN−1 of system (2.10), we can express the solutions of Lax pairs (1.1) and
(2.1)

(
u = uN−1, v = vN−1, ω = ωN−1, λ = λ

(N)
1 , λ

(N)
2

)
as follows:

h
(N)

1 = �
(N)
1



∣∣∣∣∣∣∣∣∣∣∣∣∣

1
λ

(N)
1

h
(N)
11

[
h

(N)
1 , h

(1)
2

] · · · [
h

(N)
1 , h

(N−1)
2

]
1

λ
(1)
1

h
(1)
11

[
h

(1)
1 , h

(1)
2

] · · · [
h

(1)
1 , h

(N−1)
2

]
...

...
. . .

...

1
λ

(N−1)
1

h
(N−1)
11

[
h

(N−1)
1 , h

(1)
2

] · · · [
h

(N−1)
1 , h

(N−1)
2

]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
λ

(N)
1

h
(N)
12

[
h

(N)
1 , h

(1)
2

] · · · [
h

(N)
1 , h

(N−1)
2

]
1

λ
(1)
1

h
(1)
12

[
h

(1)
1 , h

(1)
2

] · · · [
h

(1)
1 , h

(N−1)
2

]
...

...
. . .

...

1
λ

(N−1)
1

h
(N−1)
12

[
h

(N−1)
1 , h

(1)
2

] · · · [
h

(N−1)
1 , h

(N−1)
2

]

∣∣∣∣∣∣∣∣∣∣∣∣∣



,

h
(N)

2 = �
(N)
2



∣∣∣∣∣∣∣∣∣∣∣∣∣

1
λ

(N)
2

h
(N)
21

[
h

(N)
2 , h

(1)
1

] · · · [
h

(N)
2 , h

(N−1)
1

]
1

λ
(1)
2

h
(1)
21

[
h

(1)
2 , h

(1)
1

] · · · [
h

(1)
2 , h

(N−1)
1

]
...

...
. . .

...

1
λ

(N−1)
2

h
(N−1)
21

[
h

(N−1)
2 , h

(1)
1

] · · · [
h

(N−1)
2 , h

(N−1)
1

]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
λ

(N)
2

h
(N)
22

[
h

(N)
2 , h

(1)
1

] · · · [
h

(N)
2 , h

(N−1)
1

]
1

λ
(1)
2

h
(1)
22

[
h

(1)
2 , h

(1)
1

] · · · [
h

(1)
2 , h

(N−1)
1

]
...

...
. . .

...

1
λ

(N−1)
2

h
(N−1)
22

[
h

(N−1)
2 , h

(1)
1

] · · · [
h

(N−1)
2 , h

(N−1)
1

]

∣∣∣∣∣∣∣∣∣∣∣∣∣



,

where

�
(N)
1 =

λ
(N)
1

( λ
(N)
1

λ
(1)
2

− 1
) · · · ( λ

(N)
1

λ
(N−1)
2

− 1
)

∣∣∣∣∣∣∣∣∣∣∣

[
h

(1)
1 , h

(1)
2

] [
h

(1)
1 , h

(2)
2

] · · · [
h

(1)
1 , h

(N−1)
2

][
h

(2)
1 , h

(1)
2

] [
h

(2)
1 , h

(2)
2

] · · · [
h

(2)
1 , h

(N−1)
2

]
...

...
. . .

...[
h

(N−1)
1 , h

(1)
2

] [
h

(N−1)
1 , h

(2)
2

] · · · [
h

(N−1)
1 , h

(N−1)
2

]

∣∣∣∣∣∣∣∣∣∣∣

,

�
(N)
2 =

λ
(N)
2

( λ
(N)
2

λ
(1)
1

− 1
) · · · ( λ

(N)
2

λ
(N−1)
1

− 1
)

∣∣∣∣∣∣∣∣∣∣∣

[
h

(1)
2 , h

(1)
1

] [
h

(1)
2 , h

(2)
1

] · · · [
h

(1)
2 , h

(N−1)
1

][
h

(2)
2 , h

(1)
1

] [
h

(2)
2 , h

(2)
1

] · · · [
h

(2)
2 , h

(N−1)
1

]
...

...
. . .

...[
h

(N−1)
2 , h

(1)
1

] [
h

(N−1)
2 , h

(2)
1

] · · · [
h

(N−1)
2 , h

(N−1)
1

]

∣∣∣∣∣∣∣∣∣∣∣

.



Darboux transformation and soliton solutions for the Heisenberg hierarchy 5225

We construct

H(N) = (
h

(N)

1 , h
(N)

2

)
, �(N) =

(
λ

(N)
1 0

0 λ
(N)
2

)
,

Q
(N)
1 = H(N)(�(N))−1(H (N))−1.

(4.6)

Then we can get the new solutions uN, vN, ωN for (2.10) from the following equation:(−ωN uN

vN ωN

)
= Q

(N)
1

(−ωN−1 uN−1

vN−1 ωN−1

) (
Q

(N)
1

)−1

= Q
(N)
1 · · · Q(1)

1

(−ω0 u0

v0 ω0

) (
Q

(1)
1

)−1 · · · (Q(N)
1

)−1
. (4.7)

This process can be done continually and yields a series of soliton solutions of the Heisenberg
hierarchy in theory.

In the end, we will give a simple example. We will construct the 1-soliton solutions for
Heisenberg hierarchy (2.10). Substituting u = 0, v = 0, ω = 1 into the Lax pairs (1.1) and
(2.1), we choose two basic solutions corresponding to λ = λ1 and λ = λ2 as follows:

h1 =
(

e−ξ1

eξ1

)
, h2 =

(−e−ξ2

eξ2

)
, (4.8)

where ξi = λi

(
x + λn

i t
)
, i = 1, 2. Then, we can construct

H = (h1, h2) =
(

e−ξ1 −e−ξ2

eξ1 eξ2

)
, � =

(
λ1 0
0 λ2

)
,

Q1 =
(

A B

C D

)
= H�−1H−1

=
(

λ2 eξ2−ξ1 + λ1 eξ1−ξ2 (λ2 − λ1) e−(ξ1+ξ2)

(λ2 − λ1) eξ1+ξ2 λ1 eξ2−ξ1 + λ2 eξ1−ξ2

)
· 1

λ1λ2(eξ2−ξ1 + eξ1−ξ2)
.

Thus, from (3.13) we can get

ũ = 2AB

AD − BC
= 2(λ2 − λ1)(λ2 e−2ξ1 + λ1 e−2ξ2)

λ1λ2(eξ2−ξ1 + eξ1−ξ2)2
,

ṽ = −2CD

AD − BC
= 2(λ2 − λ1)(λ1 e2ξ2 + λ2 e2ξ1)

λ1λ2(eξ2−ξ1 + eξ1−ξ2)2
,

ω̃ = AD + BC

AD − BC
= 1 +

2(λ1 − λ2)
2

λ1λ2(eξ2−ξ1 + eξ1−ξ2)2
.

(4.9)

If we choose n = 1 and n = 2 in (4.9), we can get the 1-soliton solution for systems (2.11)
and (2.12).
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