Darboux transformation and soliton solutions for the Heisenberg hierarchy

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2005 J. Phys. A: Math. Gen. 385217
(http://iopscience.iop.org/0305-4470/38/23/009)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.92
The article was downloaded on 03/06/2010 at 03:47

Please note that terms and conditions apply.

Darboux transformation and soliton solutions for the Heisenberg hierarchy

Jiong Wang
Institute of Mathematics, Fudan University, Shanghai, 200433, People's Republic of China
E-mail: 032018003@fudan.edu.cn

Received 30 March 2005
Published 25 May 2005
Online at stacks.iop.org/JPhysA/38/5217

Abstract

Starting from a spectral problem, we derive the well-known Heisenberg hierarchy. An explicit and universal Darboux transformation for the whole hierarchy is constructed. The soliton solutions for the Heisenberg hierarchy are obtained by applying the Darboux transformation.

PACS numbers: $05.45 . \mathrm{Yv}, 02.30 . \mathrm{Jr}$

1. Introduction

From the middle of the 1970s, the continuous Heisenberg spin chain aroused considerable interest [1-5]. Tjon and Wright obtained the explicit formula for the single-soliton solution in the isotropic case [3]. Takhtajan studied the integration of the continuous Heisenberg spin chain equation through the inverse scattering transform method and obtained its Lax representation [4]. Afterwards, Chen and Li gave the higher order Heisenberg spin chain equations, and they proved that these evolution equations are equivalent to the evolution equation of AKNS type [5]. By the use of the spectral problem nonlinearization method, Qiao obtained the finite-dimensional integrable system and the involutive solutions of the higher order Heisenberg spin chain equations [6].

Darboux transformation is a powerful method to get exact solutions of nonlinear partial differential equations. The key for constructing Darboux transformation is to expose a kind of covariant properties that the corresponding spectral problems possess. There have been many tricks to do this for getting explicit solutions to various soliton equations [7-10]. In this paper, we are interested in the Darboux transformation and exact solutions of the Heisenberg hierarchy associated with the following Heisenberg spectral problem:

$$
\psi_{x}=U \psi=\lambda U_{1} \psi=\left(\begin{array}{cc}
-\lambda \omega & \lambda u \tag{1.1}\\
\lambda v & \lambda \omega
\end{array}\right) \psi, \quad \omega^{2}+u v=1
$$

The outline of our present paper is as follows. In section 2, we derive the Heisenberg hierarchy associated with the spectral problem (1.1). In section 3, we construct Darboux transformation
for the Heisenberg hierarchy. In section 4, we construct soliton solutions for the hierarchy by using its Darboux transformation.

2. The Heisenberg hierarchy

In order to derive the isospectral hierarchy associated with (1.1), we consider the auxiliary problem

$$
\psi_{t}=V^{(n)} \psi, \quad V^{(n)}=\sum_{k=0}^{n} V_{k} \lambda^{n-k+1}=\sum_{k=0}^{n}\left(\begin{array}{cc}
V_{11}^{(k)} & V_{12}^{(k)} \tag{2.1}\\
V_{21}^{(k)} & V_{22}^{(k)}
\end{array}\right) \lambda^{n-k+1}
$$

The compatibility condition between (1.1) and (2.1) yields the zero-curvature equation

$$
\begin{equation*}
U_{t_{n}}-V_{x}^{(n)}+\left[U, V^{(n)}\right]=0, \tag{2.2}
\end{equation*}
$$

which is equivalent to the following recurrence relations:

$$
\begin{align*}
& U_{1} V_{0}-V_{0} U_{1}=0, \\
& V_{k-1, x}=U_{1} V_{k}-V_{k} U_{1}, \quad 1 \leqslant k \leqslant n \tag{2.3}\\
& U_{1 t}=V_{n x} .
\end{align*}
$$

Further we choose $V_{11}^{(0)}=-\omega, V_{12}^{(0)}=u, V_{21}^{(0)}=v, V_{22}^{(0)}=\omega$, and from (2.3) we have

$$
\begin{align*}
& -2 \omega V_{12}^{(k)}-u\left(V_{11}^{(k)}-V_{22}^{(k)}\right)=V_{12 x}^{(k-1)} \tag{2.4}\\
& v\left(V_{11}^{(k)}-V_{22}^{(k)}\right)+2 \omega V_{21}^{(k)}=V_{21 x}^{(k-1)} \tag{2.5}\\
& \partial_{x}\left(u V_{21}^{(k)}+v V_{12}^{(k)}-\omega V_{11}^{(k)}+\omega V_{22}^{(k)}\right)=\frac{u_{x} V_{21 x}^{(k-1)}}{2 \omega}-\frac{v_{x} V_{12 x}^{(k-1)}}{2 \omega} \tag{2.6}\\
& \partial_{x}\left(V_{11}^{(k)}+V_{22}^{(k)}\right)=0 . \tag{2.7}
\end{align*}
$$

From (2.4) and (2.5), we could easily prove that

$$
\begin{aligned}
\left.V_{12}^{(k)}\right|_{(u, v)=(0,0)} & =\left.\frac{-1}{2 \omega} \partial_{x} V_{12}^{(k-1)}\right|_{(u, v)=(0,0)} \\
& =\cdots=\left.\left(\frac{-1}{2 \omega}\right)^{k} \partial_{x}^{k} V_{12}^{(0)}\right|_{(u, v)=(0,0)}=0 \\
\left.V_{21}^{(k)}\right|_{(u, v)=(0,0)} & =\left.\frac{1}{2 \omega} \partial_{x} V_{21}^{(k-1)}\right|_{(u, v)=(0,0)} \\
& =\cdots=\left.\left(\frac{1}{2 \omega}\right)^{k} \partial_{x}^{k} V_{21}^{(0)}\right|_{(u, v)=(0,0)}=0
\end{aligned}
$$

We use the condition $\left.V_{11}^{(k)}\right|_{(u, v)=(0,0)}=\left.V_{22}^{(k)}\right|_{(u, v)=(0,0)}=0(1 \leqslant k \leqslant n)$ to select the integration constant to be zero, then (2.6) and (2.7) are equivalent to

$$
\begin{align*}
& u V_{21}^{(k)}+v V_{12}^{(k)}-\omega V_{11}^{(k)}+\omega V_{22}^{(k)}=\int \frac{u_{x} V_{21 x}^{(k-1)}}{2 \omega}-\frac{v_{x} V_{12 x}^{(k-1)}}{2 \omega} \mathrm{~d} x, \tag{2.8}\\
& V_{11}^{(k)}+V_{22}^{(k)}=0 . \tag{2.9}
\end{align*}
$$

By using (2.4), (2.5), (2.8) and (2.9), we can get $V_{i j}^{(k)}$ from $V_{i j}^{(k-1)}$. A direct calculation gives

$$
\begin{array}{ll}
V_{11}^{(1)}=\frac{1}{2}\left(\omega_{x} \omega+u v_{x}\right), & V_{12}^{(1)}=\frac{1}{2}\left(u \omega_{x}-u_{x} \omega\right), \\
V_{21}^{(1)}=\frac{1}{2}\left(v_{x} \omega-v \omega_{x}\right), & V_{22}^{(1)}=\frac{1}{2}\left(\omega_{x} \omega+u_{x} v\right), \\
V_{11}^{(2)}=-\frac{1}{4}\left(\omega_{x x}+\frac{3}{2} \omega\left(u_{x} v_{x}+\omega_{x}^{2}\right)\right), & V_{12}^{(2)}=\frac{1}{4}\left(u_{x x}+\frac{3}{2} u\left(u_{x} v_{x}+\omega_{x}^{2}\right)\right), \\
V_{21}^{(2)}=\frac{1}{4}\left(v_{x x}+\frac{3}{2} v\left(u_{x} v_{x}+\omega_{x}^{2}\right)\right), \quad V_{22}^{(2)}=\frac{1}{4}\left(\omega_{x x}+\frac{3}{2} \omega\left(u_{x} v_{x}+\omega_{x}^{2}\right)\right) .
\end{array}
$$

So the soliton hierarchy associated with Heisenberg spectral problem (1.1) can be written as follows:

$$
\begin{equation*}
u_{t_{n}}=V_{12 x}^{(n)} \quad v_{t_{n}}=V_{21 x}^{(n)}, \quad n=0,1,2, \ldots \tag{2.10}
\end{equation*}
$$

The first and second typical nonlinear systems ($n=1,2$) in the hierarchy are, respectively,

$$
\begin{equation*}
u_{t_{1}}=\frac{1}{2}\left(u \omega_{x}-u_{x} \omega\right)_{x}, \quad v_{t_{1}}=\frac{1}{2}\left(v_{x} \omega-v \omega_{x}\right)_{x} \tag{2.11}
\end{equation*}
$$

and
$u_{t_{2}}=\frac{1}{4}\left(u_{x x}+\frac{3}{2} u\left(u_{x} v_{x}+\omega_{x}^{2}\right)\right)_{x}, \quad v_{t_{2}}=\frac{1}{4}\left(v_{x x}+\frac{3}{2} v\left(u_{x} v_{x}+\omega_{x}^{2}\right)\right)_{x}$.

3. Darboux transformation

In this section, we will construct a Darboux transformation for the soliton hierarchy (2.10). The Darboux transformation is actually a special gauge transformation

$$
\begin{equation*}
\tilde{\psi}=T \psi \tag{3.1}
\end{equation*}
$$

of the solutions of the Lax pairs (1.1) and (2.1). It is required that $\widetilde{\psi}$ also satisfies Lax pairs (1.1) and (2.1) with some \widetilde{U} and $\widetilde{V}^{(n)}$, i.e.

$$
\begin{array}{ll}
\widetilde{\psi}_{x}=\widetilde{U} \widetilde{\psi}, & \widetilde{U}=\left(T_{x}+T U\right) T^{-1} \\
\widetilde{\psi}_{t}=\widetilde{V}^{(n)} \widetilde{\psi}, & \widetilde{V}^{(n)}=\left(T_{t}+T V^{(n)}\right) T^{-1} \tag{3.3}
\end{array}
$$

By cross differentiating (3.2) and (3.3), we get

$$
\begin{equation*}
\widetilde{U}_{t}-\widetilde{V}^{(n)}+\left[\widetilde{U}, \widetilde{V}^{(n)}\right]=T\left(U_{t}-V_{x}^{(n)}+\left[U, V^{(n)}\right]\right) T^{-1} \tag{3.4}
\end{equation*}
$$

which implies that in order to make systems (2.10) invariant under the gauge transformation (3.1), we should require $\widetilde{U}, \widetilde{V}^{(n)}$ have the same forms as $U, V^{(n)}$, respectively. At the same time the old potentials u and v in $U, V^{(n)}$ will be mapped into new potentials \widetilde{u} and \widetilde{v} in $\widetilde{U}, \widetilde{V}^{(n)}$. This process can be done continually and usually it may yield a series of multisoliton solutions. Following the idea of [7], we can construct Darboux transformation for soliton hierarchy (2.10) as follows.

Let h_{i} be the solution of spectral problems (1.1) and (2.1) when $\lambda=\lambda_{i}\left(i=1,2 ; \lambda_{i} \neq 0\right)$. We construct a new matrix

$$
H=\left(h_{1}, h_{2}\right) .
$$

From (1.1) and (2.1), we can get

$$
\begin{equation*}
H_{x}=U_{1} H \Lambda, \quad H_{t}=\sum_{k=0}^{n} V_{k} H \Lambda^{n-k+1}, \quad \Lambda=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}\right) . \tag{3.5}
\end{equation*}
$$

Then we construct

$$
\begin{equation*}
T=Q_{1} \lambda+Q_{0} \tag{3.6}
\end{equation*}
$$

where

$$
Q_{0}=-I, \quad Q_{1}=H \Lambda^{-1} H^{-1}=\left(\begin{array}{ll}
A & B \tag{3.7}\\
C & D
\end{array}\right)
$$

It is easy to see that

$$
\begin{equation*}
Q_{1 x}=H_{x} \Lambda^{-1} H^{-1}-H \Lambda^{-1} H^{-1} H_{x} H^{-1}=U_{1}-Q_{1} U_{1} Q_{1}^{-1} \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{det} Q_{1}=A D-B C=\frac{1}{\lambda_{1} \lambda_{2}} \neq 0 \tag{3.9}
\end{equation*}
$$

Substituting (3.6) into (3.2) and (3.3), by using (3.5), we can obtain

$$
\begin{equation*}
\widetilde{U}=\widetilde{U}_{1} \lambda, \quad \widetilde{V}^{(n)}=\sum_{k=0}^{n} \widetilde{V}_{k} \lambda^{n-k+1} \tag{3.10}
\end{equation*}
$$

where

$$
\begin{array}{ll}
\widetilde{U}_{1}=Q_{1} U_{1} Q_{1}^{-1}, \quad \widetilde{V}_{0}=Q_{1} V_{0} Q_{1}^{-1} \tag{3.11}\\
\widetilde{V}_{k}=Q_{1} V_{k} Q_{1}^{-1}-V_{k-1} Q_{1}^{-1}+\widetilde{V}_{k-1} Q_{1}^{-1}, & 1 \leqslant k \leqslant n
\end{array}
$$

Next we will prove that \widetilde{U} and $\widetilde{V}^{(n)}$ also have the same forms as U and $V^{(n)}$ after some transformations.

Proposition 1. The matrix \tilde{U} determined by (3.10) has the same form as U, that is

$$
\widetilde{U}=\widetilde{U}_{1} \lambda=\left(\begin{array}{cc}
-\lambda \widetilde{\omega} & \lambda \widetilde{u} \tag{3.12}\\
\lambda \widetilde{v} & \lambda \widetilde{\omega}
\end{array}\right), \quad \widetilde{\omega}^{2}+\widetilde{u} \widetilde{v}=1
$$

where the transformations between u, v, ω and $\widetilde{u}, \widetilde{v}, \widetilde{\omega}$ are given by

$$
\begin{align*}
\widetilde{u} & =\frac{2 \omega A B+u A^{2}-v B^{2}}{A D-B C} \\
\widetilde{v} & =\frac{-2 \omega C D-u C^{2}+v D^{2}}{A D-B C} \tag{3.13}\\
\widetilde{\omega} & =\frac{\omega(A D+B C)+u A C-v B D}{A D-B C} .
\end{align*}
$$

A, B, C, D are determined by (3.7). The transformation $(\psi, u, v, \omega) \rightarrow(\widetilde{\psi}, \widetilde{u}, \widetilde{v}, \widetilde{\omega})$ is called a Darboux transformation of the spectral problem (1.1).

Proof. From (3.10) we can obtain

$$
\begin{aligned}
\widetilde{U}_{1} & =Q_{1} U_{1} Q_{1}^{-1} \\
& =\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)\left(\begin{array}{cc}
-\omega & u \\
v & \omega
\end{array}\right)\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)^{-1} \\
& =\frac{1}{A D-B C}\left(\begin{array}{cc}
-\omega(A D+B C)-u A C+v B D & 2 \omega A B+u A^{2}-v B^{2} \\
-2 \omega C D-u C^{2}+v D^{2} & \omega(A D+B C)+u A C-v B D
\end{array}\right) \\
& =\left(\begin{array}{cc}
-\widetilde{\omega} & \widetilde{u} \\
\widetilde{v} & \widetilde{\omega}
\end{array}\right) .
\end{aligned}
$$

We can also find

$$
\widetilde{\omega}^{2}+\widetilde{u} \widetilde{v}=-\operatorname{det} \widetilde{U}_{1}=-\operatorname{det} Q_{1} \cdot \operatorname{det} U_{1} \cdot \operatorname{det} Q_{1}^{-1}=1 .
$$

So we get that after the transformation (3.13), \widetilde{U} has the same form as U. The proof is completed.

Next we shall prove that $\widetilde{V}^{(n)}$ also has the same form as $V^{(n)}$ under the transformations (3.1) and (3.13).

Proposition 2. The matrix $\widetilde{V}^{(n)}$ determined by (3.10) has the same form as $V^{(n)}$ under the transformations (3.1) and (3.13).

Proof. Because $V^{(n)}=\sum_{k=0}^{n} V_{k} \lambda^{n-k+1}$ and $\widetilde{V}^{(n)}=\sum_{k=0}^{n} \widetilde{V}_{k} \lambda^{n-k+1}$, we only need to prove that \widetilde{V}_{k} has the same form as V_{k} after the transformations (3.1) and (3.13) $(0 \leqslant k \leqslant n)$.

First, it is easy to see that

$$
V_{0}=U_{1}, \quad \widetilde{V}_{0}=Q_{1} V_{0} Q_{1}^{-1}=\widetilde{U}_{1} .
$$

From proposition 1, we can get \widetilde{V}_{0} which has the same form as V_{0}.
Again by using (2.2) and (3.4), we can get

$$
\begin{equation*}
\widetilde{U}_{t}-\widetilde{V}_{x}^{(n)}+\left[\widetilde{U}, \widetilde{V}^{(n)}\right]=T\left(U_{t}-V_{x}^{(n)}+\left[U, V^{(n)}\right]\right) T^{-1}=0 . \tag{3.14}
\end{equation*}
$$

We have proved that \widetilde{U} has the same form as U, so \widetilde{V}_{k} satisfies the same equations as V_{k}. Following a similar proof as in section 2 , we could easily prove that $\left.\widetilde{V}_{12}^{(k)}\right|_{(\widetilde{u}, \tilde{v})=(0,0)}=$ $\left.\widetilde{V}_{21}^{(k)}\right|_{(\widetilde{u}, \widetilde{v})=(0,0)}=0$. Next we only need to prove $\left.\widetilde{V}_{11}^{(k)}\right|_{\widetilde{(}, \widetilde{v})=(0,0)}=\left.\widetilde{V}_{22}^{(k)}\right|_{\widetilde{(}, \widetilde{v})=(0,0)}=0$ $(1 \leqslant k \leqslant n)$.

In the following proof, we set $\widetilde{\omega}_{0}=\left.\widetilde{\omega}\right|_{\mid \widetilde{u}, \widetilde{v})=(0,0)}=1$ (the proof also holds for $\widetilde{\omega}_{0}=-1$.

When $\tilde{u}=0, \tilde{v}=0$, we can get from (3.13) that

$$
\begin{equation*}
u=-\frac{2 B D}{A D-B C}, \quad v=\frac{2 A C}{A D-B C}, \quad \omega=\frac{A D+B C}{A D-B C} \tag{3.15}
\end{equation*}
$$

From (3.11), we have

$$
\begin{aligned}
\left.\widetilde{V}_{1}\right|_{(\widetilde{u}, \widetilde{v})=(0,0)} & =\left(\begin{array}{ll}
\widetilde{V}_{11}^{(1)} & \widetilde{V}_{12}^{(1)} \\
\widetilde{V}_{21}^{(1)} & \widetilde{V}_{22}^{(1)}
\end{array}\right)_{(\widetilde{u}, \widetilde{v})=(0,0)} \\
& =Q_{1} V_{1} Q_{1}^{-1}-V_{0} Q_{1}^{-1}+\left.\widetilde{V}_{0} Q_{1}^{-1}\right|_{(\widetilde{u}, \widetilde{v})=(0,0)} \\
& =Q_{1} V_{1} Q_{1}^{-1}-Q_{1}^{-1} \widetilde{V}_{0}+\left.\widetilde{V}_{0} Q_{1}^{-1}\right|_{\widetilde{u}, \widetilde{v})=(0,0)},
\end{aligned}
$$

so we get

$$
\begin{equation*}
\left.\widetilde{V}_{11}^{(1)}\right|_{(\widetilde{u}, \widetilde{v})=(0,0)}=\frac{1}{A D-B C}\left[(A D+B C) V_{11}^{(1)}+B D V_{21}^{(1)}-A C V_{12}^{(1)}\right], \tag{3.16}
\end{equation*}
$$

$$
\begin{equation*}
\left.\widetilde{V}_{22}^{(1)}\right|_{\widetilde{u}, \widetilde{v})=(0,0)}=-\frac{1}{A D-B C}\left[(A D+B C) V_{11}^{(1)}+B D V_{21}^{(1)}-A C V_{12}^{(1)}\right] . \tag{3.17}
\end{equation*}
$$

Substituting (3.15) into (3.16), (3.17) and choosing $k=1$ in (2.8) and (2.9), we can get

$$
\begin{equation*}
\left.\widetilde{V}_{11}^{(1)}\right|_{(\widetilde{u}, \widetilde{v})=(0,0)}=\left.\widetilde{V}_{22}^{(1)}\right|_{(\widetilde{u}, \widetilde{v})=(0,0)}=0 \tag{3.18}
\end{equation*}
$$

If we suppose $\left.\widetilde{V}_{i j}^{(k-1)}\right|_{(\widetilde{u}, \widetilde{v})=(0,0)}=0(1 \leqslant k \leqslant n)$ holds, again by using (3.11), we can get

$$
\begin{aligned}
\left.\widetilde{V}_{k}\right|_{\widetilde{u}, \widetilde{v})=(0,0)} & =\left(\begin{array}{cc}
\widetilde{V}_{11}^{(k)} & \widetilde{V}_{12}^{(k)} \\
\widetilde{V}_{21}^{(k)} & \widetilde{V}_{22}^{(k)}
\end{array}\right)_{(\widetilde{u}, \widetilde{v})=(0,0)} \\
& =Q_{1} V_{k} Q_{1}^{-1}-V_{k-1} Q_{1}^{-1}+\left.\widetilde{V}_{k-1} Q_{1}^{-1}\right|_{(\widetilde{u}, \widetilde{v})=(0,0)}
\end{aligned}
$$

From this equation and (3.15), we can obtain

$$
\begin{align*}
& \left.\widetilde{V}_{11}^{(k)}\right|_{(\widetilde{u}, \widetilde{v})=(0,0)}=\omega V_{11}^{(k)}-\frac{u}{2} V_{21}^{(k)}-\frac{v}{2} V_{12}^{(k)}-\frac{D V_{11}^{(k-1)}-C V_{12}^{(k-1)}}{A D-B C}, \tag{3.19}\\
& \left.\widetilde{V}_{22}^{(k)}\right|_{(\widetilde{u}, \widetilde{v})=(0,0)}=-\omega V_{11}^{(k)}+\frac{u}{2} V_{21}^{(k)}+\frac{v}{2} V_{12}^{(k)}-\frac{-B V_{21}^{(k-1)}-A V_{11}^{(k-1)}}{A D-B C}, \tag{3.20}\\
& \left.\widetilde{V}_{12}^{(k)}\right|_{(\widetilde{u}, \widetilde{v})=(0,0)}=\frac{-2 A B V_{11}^{(k)}-B^{2} V_{21}^{(k)}+A^{2} V_{12}^{(k)}}{A D-B C}-\frac{-B V_{11}^{(k-1)}+A V_{12}^{(k-1)}}{A D-B C}=0, \tag{3.21}\\
& \left.\widetilde{V}_{21}^{(k)}\right|_{(\widetilde{u}, \widetilde{v})=(0,0)}=\frac{2 C D V_{11}^{(k)}+D^{2} V_{21}^{(k)}-C^{2} V_{12}^{(k)}}{A D-B C}-\frac{D V_{21}^{(k-1)}+C V_{11}^{(k-1)}}{A D-B C}=0 . \tag{3.22}
\end{align*}
$$

By using (2.4), (2.5), (3.8), (3.15), (3.21) and (3.22), we can prove that when $\widetilde{u}=0, \widetilde{v}=0$

$$
\begin{align*}
& \partial_{x}\left(\frac{D V_{11}^{(k-1)}-C V_{12}^{(k-1)}}{A D-B C}\right)=-\frac{1}{2}\left[\frac{u_{x} V_{21 x}^{(k-1)}}{2 \omega}-\frac{v_{x} V_{12 x}^{(k-1)}}{2 \omega}\right], \tag{3.23}\\
& \partial_{x}\left(\frac{-B V_{21}^{(k-1)}-A V_{11}^{(k-1)}}{A D-B C}\right)=\frac{1}{2}\left[\frac{u_{x} V_{21 x}^{(k-1)}}{2 \omega}-\frac{v_{x} V_{12 x}^{(k-1)}}{2 \omega}\right] . \tag{3.24}
\end{align*}
$$

Note the fact that $\left.V_{i j}^{(s)}\right|_{(u, v)=(0,0)}=0(1 \leqslant s \leqslant n)$, so the integral constant must be zero, that is

$$
\begin{align*}
& \frac{D V_{11}^{(k-1)}-C V_{12}^{(k-1)}}{A D-B C}=-\int \frac{u_{x} V_{21 x}^{(k-1)}}{4 \omega}-\frac{v_{x} V_{12 x}^{(k-1)}}{4 \omega} \mathrm{~d} x \tag{3.25}\\
& \frac{-B V_{21}^{(k-1)}-A V_{11}^{(k-1)}}{A D-B C}=\int \frac{u_{x} V_{21 x}^{(k-1)}}{4 \omega}-\frac{v_{x} V_{12 x}^{(k-1)}}{4 \omega} \mathrm{~d} x . \tag{3.26}
\end{align*}
$$

Substituting (3.25), (3.26) into (3.19), (3.20) and using (2.8), we can finally get
$\left.\widetilde{V}_{11}^{(k)}\right|_{(\widetilde{u}, \widetilde{v})=(0,0)}=\omega V_{11}^{(k)}-\frac{u}{2} V_{21}^{(k)}-\frac{v}{2} V_{12}^{(k)}+\int \frac{u_{x} V_{21 x}^{(k-1)}}{4 \omega}-\frac{v_{x} V_{12 x}^{(k-1)}}{4 \omega} \mathrm{~d} x=0$,
$\left.\widetilde{V}_{22}^{(k)}\right|_{(\widetilde{u}, \widetilde{v})=(0,0)}=-\omega V_{11}^{(k)}+\frac{u}{2} V_{21}^{(k)}+\frac{v}{2} V_{12}^{(k)}-\int \frac{u_{x} V_{21 x}^{(k-1)}}{4 \omega}-\frac{v_{x} V_{12 x}^{(k-1)}}{4 \omega} \mathrm{~d} x=0$.
Thus, we proved that $\left.\widetilde{V}_{i j}^{(k)}\right|_{(\widetilde{u}, \widetilde{v})=(0,0)}=0(1 \leqslant k \leqslant n)$.
We proved that $\widetilde{V}^{(n)}$ and $V^{(n)}$ satisfy the same zero-curvature equation and the same boundary conditions. So they must have the same forms. The proof is completed.

From propositions 1 and 2, we can get the following theorem:

Theorem 1. The solutions (u, v, ω) of soliton hierarchy (2.10) are mapped into their new solutions ($\widetilde{u}, \widetilde{v}, \widetilde{\omega}$) under Darboux transformations (3.1) and (3.13), where A, B, C, D are given by (3.7).

4. Applications of Darboux transformations

In this section, we will apply the Darboux transformation (3.13) to construct explicit solutions of the Heisenberg hierarchy (2.10). As usual we make the Darboux transformation starting from a special solution of (2.10). We start from $u=u_{0}, v=v_{0}, \omega=\omega_{0}$, and we choose

$$
\begin{equation*}
h_{1}^{(k)}=\binom{h_{11}^{(k)}}{h_{12}^{(k)}}, \quad h_{2}^{(k)}=\binom{h_{21}^{(k)}}{h_{22}^{(k)}}, \quad 1 \leqslant k \leqslant N \tag{4.1}
\end{equation*}
$$

as the solutions of Lax pairs (1.1) and (2.1) when $\lambda=\lambda_{1}^{(k)}$ and $\lambda=\lambda_{2}^{(k)}$. Then we could construct the multisoliton solutions of (2.10) as follows.

First, we construct

$$
\begin{align*}
& H^{(1)}=\left(h_{1}^{(1)}, h_{2}^{(1)}\right), \quad \Lambda^{(1)}=\left(\begin{array}{cc}
\lambda_{1}^{(1)} & 0 \\
0 & \lambda_{2}^{(1)}
\end{array}\right), \tag{4.2}\\
& Q_{1}^{(1)}=H^{(1)}\left(\Lambda^{(1)}\right)^{-1}\left(H^{(1)}\right)^{-1} .
\end{align*}
$$

Then by the use of theorem 1, we can get the new solutions u_{1}, v_{1}, ω_{1} of (2.10) from the following equation:

$$
\left(\begin{array}{cc}
-\omega_{1} & u_{1} \tag{4.3}\\
v_{1} & \omega_{1}
\end{array}\right)=Q_{1}^{(1)}\left(\begin{array}{cc}
-\omega_{0} & u_{0} \\
v_{0} & \omega_{0}
\end{array}\right)\left(Q_{1}^{(1)}\right)^{-1}
$$

By the use of (3.1), (3.6) and after some calculations, we can get the solutions of Lax pairs (1.1) and (2.1), where $u=u_{1}, v=v_{1}, \omega=\omega_{1}$ and $\lambda=\lambda_{1}^{(2)}, \lambda_{2}^{(2)}$. These solutions can be expressed as follows:

$$
\bar{h}_{1}^{(2)}=\Delta_{1}^{(2)}\binom{\left|\begin{array}{ll}
\frac{h_{11}^{(2)}}{\lambda_{1}^{(2)}} & {\left[h_{1}^{(2)}, h_{2}^{(1)}\right]} \\
\frac{h_{11}^{(1)}}{\lambda_{1}^{(1)}} & {\left[h_{1}^{(1)}, h_{2}^{(1)}\right]}
\end{array}\right|}{\left|\begin{array}{ll}
\frac{h_{12}^{(2)}}{\lambda_{1}^{(2)}} & {\left[h_{1}^{(2)}, h_{2}^{(1)}\right]} \\
\frac{h_{12}^{(1)}}{\lambda_{1}^{(1)}} & {\left[h_{1}^{(1)}, h_{2}^{(1)}\right]}
\end{array}\right|}, \quad\left(\left.\begin{array}{ll}
\frac{h_{21}^{(2)}}{\lambda_{2}^{(2)}} & {\left[h_{2}^{(2)}, h_{1}^{(1)}\right]} \\
\frac{h_{21}^{(1)}}{\lambda_{2}^{(1)}} & {\left[h_{2}^{(1)}, h_{1}^{(1)}\right]}
\end{array} \right\rvert\,\right), \quad \bar{h}_{2}^{(2)}=\Delta_{2}^{(2)}\left(\left.\begin{array}{ll}
\left\lvert\, \frac{h_{22}^{(2)}}{\lambda_{2}^{(2)}}\right. & {\left[h_{2}^{(2)}, h_{1}^{(1)}\right]} \\
\frac{h_{22}^{(1)}}{\lambda_{2}^{(1)}} & {\left[h_{2}^{(1)}, h_{1}^{(1)}\right]}
\end{array} \right\rvert\,\right)
$$

where

$$
\begin{aligned}
& \Delta_{1}^{(2)}=\frac{\lambda_{1}^{(2)}\left(\lambda_{1}^{(2)}-\lambda_{2}^{(1)}\right)}{\lambda_{2}^{(1)}\left[h_{1}^{(1)}, h_{2}^{(1)}\right]}, \quad \Delta_{2}^{(2)}=\frac{\lambda_{2}^{(2)}\left(\lambda_{2}^{(2)}-\lambda_{1}^{(1)}\right)}{\lambda_{1}^{(1)}\left[h_{2}^{(1)}, h_{1}^{(1)}\right]} \\
& {\left[h_{i}^{(s)}, h_{j}^{(t)}\right]=\frac{h_{i 1}^{(s)} h_{j 2}^{(t)}-h_{i 2}^{(s)} h_{j 1}^{(t)}}{\lambda_{i}^{(s)}-\lambda_{j}^{(t)}}, \quad i, j=1,2}
\end{aligned}
$$

We construct

$$
\begin{align*}
& H^{(2)}=\left(\bar{h}_{1}^{(2)}, \bar{h}_{2}^{(2)}\right), \quad \Lambda^{(2)}=\left(\begin{array}{cc}
\lambda_{1}^{(2)} & 0 \\
0 & \lambda_{2}^{(2)}
\end{array}\right), \tag{4.4}\\
& Q_{1}^{(2)}=H^{(2)}\left(\Lambda^{(2)}\right)^{-1}\left(H^{(2)}\right)^{-1} .
\end{align*}
$$

Then we can get the new solutions u_{2}, v_{2}, ω_{2} of (2.10) from the following equation:

$$
\begin{align*}
\left(\begin{array}{cc}
-\omega_{2} & u_{2} \\
v_{2} & \omega_{2}
\end{array}\right) & =Q_{1}^{(2)}\left(\begin{array}{cc}
-\omega_{1} & u_{1} \\
v_{1} & \omega_{1}
\end{array}\right)\left(Q_{1}^{(2)}\right)^{-1} \\
& =Q_{1}^{(2)} Q_{1}^{(1)}\left(\begin{array}{cc}
-\omega_{0} & u_{0} \\
v_{0} & \omega_{0}
\end{array}\right)\left(Q_{1}^{(1)}\right)^{-1}\left(Q_{1}^{(2)}\right)^{-1} \tag{4.5}
\end{align*}
$$

If we have done the Darboux transformation $N-1$ times, and got the solutions $u_{N-1}, v_{N-1}, \omega_{N-1}$ of system (2.10), we can express the solutions of Lax pairs (1.1) and (2.1) $\left(u=u_{N-1}, v=v_{N-1}, \omega=\omega_{N-1}, \lambda=\lambda_{1}^{(N)}, \lambda_{2}^{(N)}\right)$ as follows:

$$
\begin{aligned}
& \bar{h}_{1}^{(N)}=\Delta_{1}^{(N)}\left(\left|\begin{array}{cccc}
\frac{1}{\lambda_{1}^{(N)}} h_{11}^{(N)} & {\left[h_{1}^{(N)}, h_{2}^{(1)}\right]} & \cdots & {\left[h_{1}^{(N)}, h_{2}^{(N-1)}\right]} \\
\frac{1}{\lambda_{1}^{(1)}} h_{11}^{(1)} & {\left[h_{1}^{(1)}, h_{2}^{(1)}\right]} & \cdots & {\left[h_{1}^{(1)}, h_{2}^{(N-1)}\right]} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{1}{\lambda_{1}^{(N-1)}} h_{11}^{(N-1)} & {\left[h_{1}^{(N-1)}, h_{2}^{(1)}\right]} & \cdots & {\left[h_{1}^{(N-1)}, h_{2}^{(N-1)}\right]}
\end{array}\right|\right) \\
& \bar{h}_{2}^{(N)}=\Delta_{2}^{(N)}
\end{aligned}\left(\left|\begin{array}{cccc}
\frac{1}{\lambda_{1}^{(N)}} h_{12}^{(N)} & {\left[h_{1}^{(N)}, h_{2}^{(1)}\right]} & \cdots & {\left[h_{1}^{(N)}, h_{2}^{(N-1)}\right]} \\
\frac{1}{\lambda_{1}^{(1)}} h_{12}^{(1)} & {\left[h_{1}^{(1)}, h_{2}^{(1)}\right]} & \cdots & {\left[h_{1}^{(1)}, h_{2}^{(N-1)}\right]} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{1}{\lambda_{1}^{(N-1)}} h_{12}^{(N-1)} & {\left[h_{1}^{(N-1)}, h_{2}^{(1)}\right]} & \cdots & {\left[h_{1}^{(N-1)}, h_{2}^{(N-1)}\right]}
\end{array}\right|\right),
$$

where

$$
\begin{aligned}
& \Delta_{1}^{(N)}=\frac{\lambda_{1}^{(N)}\left(\frac{\lambda_{1}^{(1)}}{\lambda_{2}^{(1)}}-1\right) \cdots\left(\frac{\lambda_{1}^{(N)}}{\lambda_{2}^{(N-1)}}-1\right)}{}\left|\begin{array}{cccc}
{\left[h_{1}^{(1)}, h_{2}^{(1)}\right]} & {\left[h_{1}^{(1)}, h_{2}^{(2)}\right]} & \cdots & {\left[h_{1}^{(1)}, h_{2}^{(N-1)}\right]} \\
{\left[h_{1}^{(2)}, h_{2}^{(1)}\right]} & {\left[h_{1}^{(2)}, h_{2}^{(2)}\right]} & \cdots & {\left[h_{1}^{(2)}, h_{2}^{(N-1)}\right]} \\
\vdots & \vdots & \ddots & \vdots \\
{\left[h_{1}^{(N-1)}, h_{2}^{(1)}\right]} & {\left[h_{1}^{(N-1)}, h_{2}^{(2)}\right]} & \cdots & {\left[h_{1}^{(N-1)}, h_{2}^{(N-1)}\right]}
\end{array}\right| \\
& \Delta_{2}^{(N)}=\frac{\lambda_{2}^{(N)}\left(\frac{\lambda_{2}^{(N)}}{\lambda_{1}^{(1)}}-1\right) \cdots}{} \cdots\left(\frac{\lambda_{1}^{(N)}}{\lambda_{1}^{(N-1)}}-1\right) \\
&\left|\begin{array}{cccc}
{\left[h_{2}^{(1)}, h_{1}^{(1)}\right]} & {\left[h_{2}^{(1)}, h_{1}^{(2)}\right]} & \cdots & {\left[h_{2}^{(1)}, h_{1}^{(N-1)}\right]} \\
{\left[h_{2}^{(2)}, h_{1}^{(1)}\right]} & {\left[h_{2}^{(2)}, h_{1}^{(2)}\right]} & \cdots & {\left[h_{2}^{(2)}, h_{1}^{(N-1)}\right]} \\
\vdots & \vdots & \ddots & \vdots \\
{\left[h_{2}^{(N-1)}, h_{1}^{(1)}\right]} & {\left[h_{2}^{(N-1)}, h_{1}^{(2)}\right]} & \cdots & {\left[h_{2}^{(N-1)}, h_{1}^{(N-1)}\right]}
\end{array}\right|
\end{aligned} .
$$

We construct

$$
\begin{align*}
& H^{(N)}=\left(\bar{h}_{1}^{(N)}, \bar{h}_{2}^{(N)}\right), \quad \Lambda^{(N)}=\left(\begin{array}{cc}
\lambda_{1}^{(N)} & 0 \\
0 & \lambda_{2}^{(N)}
\end{array}\right), \tag{4.6}\\
& Q_{1}^{(N)}=H^{(N)}\left(\Lambda^{(N)}\right)^{-1}\left(H^{(N)}\right)^{-1} .
\end{align*}
$$

Then we can get the new solutions u_{N}, v_{N}, ω_{N} for (2.10) from the following equation:

$$
\begin{align*}
\left(\begin{array}{cc}
-\omega_{N} & u_{N} \\
v_{N} & \omega_{N}
\end{array}\right) & =Q_{1}^{(N)}\left(\begin{array}{cc}
-\omega_{N-1} & u_{N-1} \\
v_{N-1} & \omega_{N-1}
\end{array}\right)\left(Q_{1}^{(N)}\right)^{-1} \\
& =Q_{1}^{(N)} \cdots Q_{1}^{(1)}\left(\begin{array}{cc}
-\omega_{0} & u_{0} \\
v_{0} & \omega_{0}
\end{array}\right)\left(Q_{1}^{(1)}\right)^{-1} \cdots\left(Q_{1}^{(N)}\right)^{-1} \tag{4.7}
\end{align*}
$$

This process can be done continually and yields a series of soliton solutions of the Heisenberg hierarchy in theory.

In the end, we will give a simple example. We will construct the 1 -soliton solutions for Heisenberg hierarchy (2.10). Substituting $u=0, v=0, \omega=1$ into the Lax pairs (1.1) and (2.1), we choose two basic solutions corresponding to $\lambda=\lambda_{1}$ and $\lambda=\lambda_{2}$ as follows:

$$
\begin{equation*}
h_{1}=\binom{\mathrm{e}^{-\xi_{1}}}{\mathrm{e}^{\xi_{1}}}, \quad h_{2}=\binom{-\mathrm{e}^{-\xi_{2}}}{\mathrm{e}^{\xi_{2}}} \tag{4.8}
\end{equation*}
$$

where $\xi_{i}=\lambda_{i}\left(x+\lambda_{i}^{n} t\right), i=1,2$. Then, we can construct

$$
\begin{aligned}
H & =\left(h_{1}, h_{2}\right)=\left(\begin{array}{cc}
\mathrm{e}^{-\xi_{1}} & -\mathrm{e}^{-\xi_{2}} \\
\mathrm{e}^{\xi_{1}} & \mathrm{e}^{\xi_{2}}
\end{array}\right), \quad \Lambda=\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right), \\
Q_{1} & =\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right)=H \Lambda^{-1} H^{-1} \\
& =\left(\begin{array}{cc}
\lambda_{2} \mathrm{e}^{\xi_{2}-\xi_{1}}+\lambda_{1} \mathrm{e}^{\xi_{1}-\xi_{2}} & \left(\lambda_{2}-\lambda_{1}\right) \mathrm{e}^{-\left(\xi_{1}+\xi_{2}\right)} \\
\left(\lambda_{2}-\lambda_{1}\right) \mathrm{e}^{\xi_{1}+\xi_{2}} & \lambda_{1} \mathrm{e}^{\xi_{2}-\xi_{1}}+\lambda_{2} \mathrm{e}^{\xi_{1}-\xi_{2}}
\end{array}\right) \cdot \frac{1}{\lambda_{1} \lambda_{2}\left(\mathrm{e}^{\xi_{2}-\xi_{1}}+\mathrm{e}^{\xi_{1}-\xi_{2}}\right)} .
\end{aligned}
$$

Thus, from (3.13) we can get

$$
\begin{align*}
& \widetilde{u}=\frac{2 A B}{A D-B C}=\frac{2\left(\lambda_{2}-\lambda_{1}\right)\left(\lambda_{2} \mathrm{e}^{-2 \xi_{1}}+\lambda_{1} \mathrm{e}^{-2 \xi_{2}}\right)}{\lambda_{1} \lambda_{2}\left(\mathrm{e}_{2}^{\xi_{2}-\xi_{1}}+\mathrm{e}^{\xi_{1}-\xi_{2}}\right)^{2}}, \\
& \widetilde{v}=\frac{-2 C D}{A D-B C}=\frac{2\left(\lambda_{2}-\lambda_{1}\right)\left(\lambda_{1} \mathrm{e}^{2 \xi_{2}}+\lambda_{2} \mathrm{e}^{2 \xi_{1}}\right)}{\lambda_{1} \lambda_{2}\left(\mathrm{e}_{2}^{\xi_{2}-\xi_{1}}+\mathrm{e}^{\xi_{1}-\xi_{2}}\right)^{2}}, \tag{4.9}\\
& \widetilde{\omega}=\frac{A D+B C}{A D-B C}=1+\frac{2\left(\lambda_{1}-\lambda_{2}\right)^{2}}{\lambda_{1} \lambda_{2}\left(\mathrm{e}^{\xi_{2}-\xi_{1}}+\mathrm{e}^{\xi_{1}-\xi_{2}}\right)^{2}} .
\end{align*}
$$

If we choose $n=1$ and $n=2$ in (4.9), we can get the 1 -soliton solution for systems (2.11) and (2.12).

Acknowledgments

The author expresses his gratitude to Professor E G Fan for his enthusiastic guidance. He also thanks the referees for their helpful suggestions. The work described in this paper was partially supported by a National Key Basic Research Project of China (2004CB318000), the National Science Foundation of China (10371023) and Shanghai Shuguang Project of China (02SG02).

References

[1] Nakamura K and Sadada T 1974 Phys. Lett. A 4832
[2] Lakshmanan M, Ruijgrok Th W and Thon C J 1976 Physica A 84577
[3] Tjon J and Wright J 1977 Phys. Rev. B 153470
[4] Takhtajan L A 1977 Phys. Lett. A 64235
[5] Chen D Y and Li Y S 1986 Acta Math. Sin. 2343
[6] Qiao Z J 1994 Phys. Lett. A 18697
[7] Gu C H, Hu H S and Zhou Z X 1999 Darboux Transformation in Soliton Theory and its Geometric Applications (Shanghai: Shanghai Scientific and Technical Publishers)
[8] Matveev V B and Salle M A 1991 Darboux Transformations and Solitons (Berlin: Springer)
[9] Neugebauer G and Meinel R 1984 Phys. Lett. A 100467
[10] Fan E G 2005 J. Phys. A: Math. Gen. 381063

